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Unsteady Free magneto convective Heat and 
Mass Transfer in Newtonian Fluid Flow Past 

inclined porous plate with Radiation and visc-
ous dissipation effects 

 
Shamshuddin Md1*, Sunder Ram M2 

 

Abstract— In this article, a mathematical model is developed for magnetohydrodynamic (MHD), incompressible, 
dissipative and chemically reacting Newtonian fluid flow, heat and mass transfer through a porous medium from an 
inclined plate under the effect of thermal radiation was investigated numerically. Rosseland’s diffusion approximation 
is used to describe the radiative heat flux in the energy equation. The governing partial differential equations for 
momentum, heat, and species conservation are transformed into dimensionless form under the assumption of low 
Reynolds number with appropriate dimensionless quantities. The emerging boundary value problem is then solved 
numerically with a Galerkin finite element method employing the weighted residual approach. The evolution of 
velocity, temperature and concentration are obtained as functions of the physical parameter of the problem studied in 
detail. The influence of many multi-physical parameters in these variables is illustrated graphically. Finally, grid 
independency is studied on different mesh (grid) sizes, which have been tabulated quantitatively. The study is 
relevant to MHD energy generators utilizing Newtonian working fluids and magnetic materials processing systems. 

Index Terms— buoyancy, chemical reaction, inclined plate, Newtonian fluid, Thermal radiation, viscou dissipation, FEM.   

——————————      —————————— 

1 INTRODUCTION                                                                     
agneto hydrodynamic (MHD) invoves the simula-
tion flows in which electrically liquids or gases 
interact with an applied magnetic field. MHD is 
exploited in numerous modern industrial processes 

including, multi-physical magnetohydrodyna-mics [1] vortex 
control, ionized propulsion systems, MHD pumps, MHD ac-
celerators, MHD generators [2], nuclear heat transfer control, 
medical treatment and energy generators. These systems are 
increasingly deploying or already feature more complex work-
ing fluids. Magneto-newtonian flows are therefore greatly 
relevant to such systems. Magnetohydrodynamic refers to the 
study of the mutual interaction of fluid flow with magnetic 
fields.  Many investigators have examined boundary value 
problems of such fluids in recent years using a range of com-
putational solvers. These include Postelnicu [3], Hayat et al. 
[4] and Mohamed et al., [5] whose used numerical and analyt-
ical methods, Alao et al. [6] who used spectral relaxation me-
thod, Ali et al. [7] who employed homotopy methods, Ahmed 
et al. [8] who employed finite difference method. A numerical 
solution of unsteady MHD convection heat and mass transfer 
past a semi-infinite vertical porous moving plate by adopting 
Element free Gelerkin method was studied by Sharma et al. 
[9], Helmy [10] studied unsteady  free convection flow 
through a vertical porous plate. MHD Stokes problem for a 
vertical plate under the effects of mass transfer and free con-
vection with transversely applied magnetic field was analyzed 
by Soundalgekar et al. [11]. Recently Umamaheshwar et al. 
[12] analyzed MHD transient free convection of a Newtonian 
fluid through infinite vertical porous plate also by incorporat-
ing thermal diffusion effects on unsteady free convection flow 
with magnetic field fixed relative to the fluid or plate was 
studied by Rushi kumar et al. [13]. 

Convective boundary layer flow problems in the cases of ho-
rizontal and vertical flat plates have been investigated quite 
extensively. The boundary layer flows adjacent to inclined 
plates or wedges have received less attention. The heat and 
mass transfer through an inclined plate received much atten-
tion because of its applications in engineering devices. An 
extensive review on various aspects of convective flows over 
inclined geometries has been made.  Early studies related to 
the convection flow about an inclined surface in which the 
combined forced and free boundary layer problem has been 
discussed using the similarity method which was studied by 
Sparrow et al., [14]. Later many researchers extended their 
ideas in different surfaces such as, vertical plate is considered 
by Gebhert and Pera [15] and on inclined plate by Chen and 
Yuh [16]. Other related works is Chamkha [17], Singh [18], 
Cheng [19] and Chen [20]. 

The current study is relevant to high temperature electro-
magnetic rheological flows in energy generators and magneto-
rheological materials fabrication systems, where thermal radi-
ation heat transfer is also significant. Radiation effects play an 
important role and that cannot be ignored [21,22], a few ex-
amples where high temperature heat transfer occur are gas 
turbines, nuclear power plants, missiles, satellites and space 
vehicles. Using Laplace technique, Heat and mass transfer 
effects on moving plate by incorporating Thermal radiation 
was examined by Muthukumara swamy [23]. In the most of 
investigations, the viscous dissipation term is conventionally 
neglected on the premise that under normal conditions the 
Eckert number is small based on an order of magnitude analy-
sis. The effect which bears a great importance on heat transfer 
is viscous dissipation. When the viscosity of the fluid is high, 
the dissipation term becomes important. For many cases, such 
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as polymer processing which is operated at a very high tem-
perature, viscous dissipation cannot be neglected, which is a 
possible factor in the design of large diameter oil pipe line 
under arctic environment, geothermal energy systems, hence 
study of viscous dissipation is important in various physical 
problems. Gebhert [24] investigated the effects of viscous 
dissipation in natural convection. Costa [25] has analyzed the 
thermodynamics of natural convection in enclosures with 
viscous dissipation. Gnaneswara and Bhaskar [26] investi-
gated the radiation and mass transfer effects on an unsteady 
MHD free convection flow past a heated vertical porous plate 
with viscous dissipation. First-order irreversible chemical 
reaction which takes place both in the bulk of the fluid (ho-
mogeneous) as well as at plate which is assumed to be catalyt-
ic to chemical reaction. Although chemical reactions generally 
fall into one of two categories i.e. homogenous or heterogen-
ous, the former is of interest in the present study. Homogenous 
chemical reactions take place uniformly throughout a given 
phase and are similar in nature to an internal source of heat 
generation. We consider the destructive type of homogenous 
chemical reaction. Recent advances in understanding the 
physics of flows and modeling the computational flow make 
tremendous contributions in Newtonian as well as non-
Newtonian fluids of chemical engineering, this include Si-
vaiah and Srinivasa Raju [27], Babu and Satya Narayan [28], 
Nandkeolyar et al. [29], Seth et al, [30] and Sheri and Sham-
shuddin [31,32]. 
In the present investigation, we generalize and extend existing 
studies [12] to consider the combined effects of Thermal radi-
ation and viscous dissipation on magnetohydrodynamic New-
tonian fluid flow, heat and mass transfer from an inclined 
plate adjacent to a porous medium. The non-dimensional con-
servation equations are solved with a Galerkin finite element 
method. The effect of various physical parameters on the ve-
locity, temperature and concentration profiles is illustrated 
graphically. Grid independency study has been carried out for 
different mesh sizes to show the results are independent of 
grid size. The current study is relevant to high temperature 
electromagnetic rheological flows in energy generators and 
magneto-rheological materials fabrication systems (where 
thermal radiation heat transfer is also significant) and has not 
appeared in technical literature thus far. 

2 MATHEMATICAL FORMULATION  
Consider a laminar boundary layer flow of a viscous incom-
pressible, electrically conducting, chemically reacting Newto-
nian fluid past a semi-infinite moving permeable plate in-
clined at an angle α in vertical direction embedded in a ho-
mogeneous, isotropic, porous medium under the influence of 
thermal radiation and viscous dissipation were analyzed. The 
physical configuration is illustrated in Fig. 1. Darcy’s law is 

assumed and low Reynolds number flow (viscous dominated).  
The positive x′  coordinate is measured along the plate in the 
direction of fluid motion and the    positive y′ coordinate is 
measured perpendicular to the plate. Both wall temperature 
and concentration vary with the distance along the plate and 
they are always greater than their uniform ambient values 
existing far from the plate surface. A uniform magnetic field is 
assumed to be strong Bo is applied in the positive y′ direction 
transversely to the plate. The applied magnetic field is as-
sumed to be strong enough so that the induced magnetic field 
due to the fluid motion is weak and can be neglected. 
This assumption is physically justified for partially io-
nized fluids and metallic liquids because of their small mag-
netic Reynolds number (Cramer and pai [33]). The fluid con-
sidered being gray, absorbing-emitting but non-scattering me-
dium and rosseland approximation is used to describe the ra-
diative heat flux. The radiative heat flux in the x′ direction is 
considered negligible in comparison with that of y′ direction. 
The Newtonian fluid contains a species which is reactive and 
obeys first order chemical reaction. Initially, the fluid as well 
as plate at rest which is maintained at temperature ∞′>′ TwT  
but for time 0>′t ,the plate is linearly accelerated with in-
creasing time in its own plane about the y′ axis and tempera-

ture decreases with temperature ( )ta/T ′+=′ 11 . It is as-
sumed that the plate is infinite in extent and hence all physical 
quantities depends only on y′ and t′ only.  
The general case is however greatly simplified for two-
dimensional flows, as considered here. With these foregoing 
assumptions, the governing equations under Boussinesq ap-
proximation can be written in a Cartesian of reference as fol-
lows: 

 
Fig 1: Geometry and coordinate system of the problem 
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Where ,u′ v′ velocity components along ,x′ y′ Tβ and Cβ are 
coefficient of thermal expansion and concentration expansion. 
ρ is the density of fluid, ν is the kinematic viscosity, K is 
permeability of porous medium,σ is the electrical conductivi-

ty of the fluid, g is the acceleration due to gravity, ∞′′ T,wT are 
temperature of fluid at boundary layer and far away from sur-
face. k  is thermal conductivity of the medium. pC is specific 

heat at constant pressure p , rq is the radiative heat flux in y′  

direction, ∞′′ C,wC are concentration of the solute and far 

away from surface. mD is the molecular diffusivity,
 
κ

 
is the 

thermo diffusion ratio and cK is the first order chemical reac-
tion parameter. 
The following are the spatial and temporeial boundary condi-
tions 
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Where ν/UA 2
0= , 0U is the plate velocity, a′ is accelerated 

plate velocity. The local radiant for the case of an optically 
thin gray gas (Cogley et al. [34]) and radiative heat flux is 
given by  

( )444 TTa
y
rq

′−∞′
∗−=

′∂

∂
σ                                       (5) 

Where σ  is Stefan–Boltzmann constant and ∗a is the Mean 
absorption coefficient. Equation. (5) results in a highly nonli-
near energy equation in T and it is difficult to obtain its solu-
tion. However, researchers have obtained this problem in past 
by assuming small temperature differences with in the fluid 
flow ([35], [36]). In this situation, Rosseland formula can be 
linearized about ambient temperature ∞′T assuming that the 
difference in the temperature with in the flow such that 

4T ′ can be expressed as linear combination of the tempera-
ture, using Taylor’s series expansion about 

∞′T  the expansion 

of  4T ′  can be written as follows 
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Neglecting higher order terms beyond the first degree 

in ( )
∞
′−′ TT  , we have 

43344
∞′−∞′≅ TTTT                                                 (7) 

In view of equation (5) and (7) the basic equation (2) can be 
written as  
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Let us introduce the following dimensionless variables: 
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(9) 
In view of equation (9) the basic field equations (1)- (3) can 
be expresswed in non-dimensional form as

 form as
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Where ,Gr ,Gm ,M ,K ,rP ,F ,Q ,Ec ,Sc γ
 
denotes the Gra-

shof number, Modified Grashof number, Magnetic field para-
meter, Permeability of the porous medium, Prandtl number, 
Thermal radiation parameter, Heat absorption parameter, 
Viscous dissipation, Schmidt number and Chemical reaction 
parameters respectively. 
The corresponding initial and boundary conditions in dimen-
sionless form are  
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METHOD 

3.1 Finite element method 
The finite element method is a most powerful technique for 
solving ordinary differential or Partial differential equations as 
well as for integral equations. This method is so general that it 
can be applied to a wide variety of engineering problems 
including heat transfer, fluid mechanics, ,solid mechanics, 
bio-fluid dynamics, geomechanics, chemical processing and in 
many other fields. The set of Partial differential equations 
(10)-(12) subject to boundary conditions (13) are nonlinear, 
coupled and therefore it cannot be solved analytically. Hence, 
the following  Bathe [37] and Reddy [38], the finite element 
method is used to obtain an accurate and efficient solution to 
the boundary value problem under consideration. A review of 
the superior efficiency of FEM in hydromagnetic transport 
phenomena simulations compared with other numerical me-
thods (e.g., boundary elements, finite volumes, smoothed par-
ticle hydrodynamics, network simulation, and spectral me-
thods) has been provided by many investigators. The 
fundamental steps involved in the finite-element method are  
• Discretization of the infinite fluid domain into finite ele-

ments  
• Derivation of element equations 
• Assembly of elemnt equations 
• Imposition of boundary conditions 
• Solutionof ssembeled equations 
The final assembled equations so obtained can be solved by 
iterative technique. For computational purpose, the coordi-
nate y is varied from 0 to 10=maxy ,where maxy represents 
infinity i.e., external to the momentum, energy and concentra-
tion edge layers. 

3.2 Variational Formulation 
The variational formulation associated with equations (10) – 
(12) over a typical two -noded linear element ( )1+ey,ey  is 
given by 
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Where 1w , 2w , 3w are the arbitrary test functions and may be 
viewed as the variation in ,u θ  and φ  respectively. After 
reducing the order of integration and non – linearity, we arrive 
at the following system of equations. 
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3.3 Finite Element Formulation 
The finite element model may be obtained from equations 
(17) – (19) by substituting finite element approximations of 
the form: 
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tively at the jth  node of typical the  element ( )1+ey,ey  
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The finite element model of the equations for the  element 
thus formed is given by  
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(22)                                                                                           
Where [ ],mnK [ ]mnM and{ },eu { },eθ { },eφ { },eu′ { },eθ′ { }eφ′

{ }meb (m, n=1,2,3) are the set of matrices of order 22 ×  and 

12 ×  respectively and /'  (dash) indicates dy/d . These ma-
trices are defined as follows:  
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3.4 Grid Independy Study 
In general, to study the grid independency (or) dependency, a 
grid refinement test is carried out by dividing the whole do-
main into successively sized grids 81x81, 101x101 and 
121x121 in the z-axis direction. Furthermore, we ran the de-
veloped code for different grid sizes and finally we found that 
all the solutions are independent of grid. After many tests, we 
adopted grid size as 101 intervals. Thus, all the computations 
were carried out with 101 intervals of equal step size 0.01. At 
each node 4 functions are     to be evaluated and after assem-
bly of element equations, a set of 404 non-linear equations are 
obtained and which may not produce closed form solutions, 
consequently an iterative scheme is adopted to solve the sys-
tem by introducing the boundary conditions. Finally, the solu-
tion is assumed to be convergent whenever the relative differ-

ence between two successive iterations i.e. the iterative 
process is terminated when the following condition 

6101 −≤∑ −+
j,i

nn ξξ where φθξ ,,u= and n denote the 

iterative step. We also check how the mesh size should be 
varied at different mesh (grid) sizes and get a range at which 
there is no variation in the solutions. From table 1, we con-
clude that no variations in velocity, temperature and concen-
tration. Hence the results are independent of mesh size. 

 
Table 1. The numerical values of ,u θ and φ for different 

mesh (grid) sizes at 50.t =  
 Mesh size = 0.01 Mesh size = 0.001 
 
 
 
 
 
 

50.t =  
 

u  θ  φ  u  θ  φ  
0.3000 0.8200 0.8200 0.3000 0.8200 0.8200 
0.4968 0.7724 0.7951 0.4968 0.7724 0.7951 
0.6733 0.7275 0.7710 0.6733 0.7275 0.7710 
0.8301 0.6852 0.7475 0.8301 0.6852 0.7475 
0.9676 0.6454 0.7247 0.9676 0.6454 0.7247 
1.0867 0.6079 0.7026 1.0867 0.6079 0.7026 
1.1833 0.5392 0.6811 1.1833 0.5392 0.6811 
1.2734 0.5078 0.6603 1.2734 0.5078 0.6603 
1.3430 0.4783 0.6400 1.3430 0.4783 0.6400 
1.3981 0.4504 0.6204 1.3981 0.4504 0.6204 
1.4400 0.4242 0.6013 1.4400 0.4242 0.6013 
1.4696 0.3994 0.5827 1.4696 0.3994 0.5827 

 
Now it is important to calculate the physical quantities of pri-
mary interest, which are the Skin-friction, Wall couple stress, 
Nusselt number and Sherwood number. 
Skin-friction is obtained as, 

0=∂

∂
−= 





yy

u
τ                                                                         

(27)
    Nusselt number is obtained as, 

0=∂

∂
−= 





yy
Nu

θ
                                                                     

(28)
    Sherwood number is obtained as, 

0=∂

∂
−= 





yy
Sh

φ
                                                                        

(29) 
 

 
Table 2: Variations of in coefficient of skin friction for differ-

ent ,Gr ,Gm ,M K  
Gr  Gm  M  K  τ  
5.0 5.0 1.0 0.5 1.4325 
10 5.0 1.0 0.5 1.8304 
5.0 10 1.0 0.5 2.0432 
5.0 5.0 2.0 0.5 1.3876 
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5.0 5.0 1.0 1.0 1.7834 
 
 
 

Table 3: Variations of in coefficient of skin friction and Nus-
selt number for different Pr, ,F ,Q Ec  

Pr  F  Q  Ec  τ  Nu  

0.71 0.5 1.0 0.001 1.8652 0.4213 
1.0 0.5 1.0 0.001 1.4120 1.3025 

0.71 1.0 1.0 0.001 2.4512 0.5874 
0.71 0.5 2.0 0.001 1.6314 0.3056 
0.71 0.5 1.0 0.005 1.7201 0.1104 

 
 

Table 4: Variations of in coefficient of skin friction and Sher-
wood number for different ,Sc γ  

Sc  γ  τ  Sh  
0.22 0.5 1.4067 0.5608 
0.60 0.5 1.1341 1.0105 
0.22 1.0 1.2788 0.7338 

 Tables 2,3,4 show the numerical values of the Skin friction 
τ , Nusselt number Nu and Sherwood number Sh  for various 
physical parameters involved in the formulation. From table 2, 
it is observed that Gr , Gm , K  increases skin friction increas-
es, whereas the skin friction decreases as M increases. Fur-
ther, it is noticed from table 3 that as Pr , Q and Ec increases 
skin friction decreases but in case of F skin friction increases. 
As Pr , F  increases Nusselt number increases and Q , Ec  
increases Nusselt number decreases. Furthermore, table 4 
depicts that as Sc , γ  increases skin friction decreases, oppo-
site behaviour is observed in case of Sherwood number i.e. 
Sc , γ increases Sherwood number increases. 

4 RESULTS AND INTERPRETATION 
The nonlinear boundary value problem solved in the previous 
section is dictated by an extensive number of thermal and 
hydrodynamic parameters. To gain a clear insight into the 
physical problem, numerical calculations for distribution of 
the velocity, temperature and concentration for different val-
ues of these parameters is conducted with graphical illustra-
tions (Figs. 2-18). For our computation, we adopted the fol-
lowing default parameters: ,.a 51= 50.t =  and all graphs 
therefore correspond to these values unless specifically indi-
cated otherwise on the appropriate graph. The permeability in 
all the Figures plotted is set at 0.5 which corresponds to a 
highly porous regime, characteristic of many materials opera-
tions and working MHD generators. The value of Pr is taken 
to be 0.71 which corresponds to air at 20°C and 1 atmospheric 
pressure and the value of Sc is 0.6 (water-vapour). Due to the 
presence of free convection currents, large positive values of 

5=Gr  and 5=Gm  are selected which imply strong thermal 

and species buoyancy effects in the regime and where the 
thermal buoyancy is twice the intensity of species buoyancy.  
The influence of angle of inclination )(α  of the surface ve-
locity profiles has been depicted in Figure 2. It is clearly ob-
served from the figures that velocity is decreased with an in-
crease of angle of inclination, this is since drag is experienced 
at the plate surface so that it is harder for the fluid to flow 
along the plate. Furthermore, the buoyancy effects decrease 
due to the thermal diffusion decrease by a factor of gravity 
components αcos . Hence the fluid attains high velocity 

profiles for the vertical plate ).,e.i( 00=α  than that of in-
clined plate. 
Figures 3 and 4 present the effect of thermal radiation-
conduction parameter F  on respectively linear velocity and 
temperature profiles. This parameter is defined as 

2
0

3216 U/TaF κσν ∞′
∗=  and features in the augmented 

thermal diffusion term in equation. (11). It defines the relative 
contribution of thermal radiation heat transfer to thermal con-
duction heat transfer. When 1<F  thermal conduction domi-
nates. When 1=F  both thermal conduction and thermal radi-
ation contributions are equal. For 1>F thermal radiation 
dominates over thermal conduction. Fig. 3 clearly reveals that 
there is a strong deceleration in the linear velocity with in-
creasing F  values. The energizing of the flow enhances 
thermal diffusion but counteracts momentum diffusion. This 
leads to an increase in momentum boundary layer thickness. 
Increasing radiation-conduction parameter is also found to 
decrease temperatures in the boundary layer (fig. 4). Thermal 
boundary layer thickness is therefore also reduced with greater 
values of F . 
Figures 5 and 6 illustrate the influence of the Eckert number 
i.e. viscous dissipation parameter (Ec) on velocity and dimen-
sionless temperature profiles. Ec expresses the relationship 
between the kinetic energy in the flow and the boundary layer 
enthalpy difference. It embodies the conversion of kinetic 
energy into internal energy by work done against the viscous 
fluid stresses. It is an important parameter for describing real 
working fluids in various materials processing operations 
where dissipation effects are not trivial. Convection is en-
hanced and we observe in consistency with that the fluid is 
accelerated. Temperatures are also enhanced markedly with 
greater Eckert number, as shown in Figure 6 since internal 
energy is increased due to kinetic energy dissipation. 
Figures 7 and 8 depicts the influence of heat absorption pa-
rameter, Q  on velocity and temperature distribution respec-
tively in the flow. The heat absorption parameter Q appearing 
in (2) quantifies the amount of heat absorbed per unit volume 
which is given by ( )∞′−′′ TwTQ , Q′ being a constant coeffi-
cient, which may take as either positive or negative  or zero 
(no heat source./sink). The source term represents heat absorp-
tion for 0>Q and heat generation when 0<Q . Physically 
speaking, the presence of heat absorption (thermal sink) ef-
fects has the tendency to reduce the fluid temperature. This 
de-energizes the flow and causes a strong deceleration i.e. net 
reduction in the fluid velocity, as observed in Fig. 7. Greater 
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heat absorption Q clearly reduces the temperatures in the do-
main as observed in Fig. 8, and the effect is most prominent at 
the wall.  
Figures 9 and 10 illustrate the influence of Prandtl number 
(Pr) on the linear velocity and temperature profiles. With 
greater Prandtl number the velocity is significantly decreased 
throughout the boundary layer as in fig 9. Prandtl number 
represents the relative rate of momentum diffusion to energy 
diffusion. With Pr > 1 the momentum diffusion rate also ex-
ceeds the thermal diffusion rate in the fluid. This will also 
manifest in an increase in momentum (hydrodynamic) boun-
dary layer thickness. Similarly, there is a strong depression 
in temperature with greater Prandtl number (Pr), greater 
Prandtl number corresponds to a lower thermal conductivity. 
This leads to a reduction in thermal energy convected 
through the fluid from the plate (Gr >0 i.e. plate cooling) and 
depresses the thermal boundary layer thickness. 

Figure 11 and 12 illustrates the response of velocity and con-
centration profiles to different values of Schmidt number ( )Sc . 
The Schmidt number is a fundamental parameter in species 
diffusion (mass transfer) which describes the ratio of the mo-
mentum to the molecular (species) diffusivity i.e. D/vSc = . 
The Schmidt number therefore quantifies the relative effec-
tiveness of momentum and mass transport by diffusion in the 
hydrodynamic (velocity) and concentration (species) boun-
dary layers. It is observed that as the Schmidt number increas-
es both velocity and concentration decreases. The momentum 
boundary layer thickness is also reduced with greater Schmidt 
number. The associated decrease in species diffusivity results 
in less vigorous mass transfer which reduces concentration 
levels and depletes the concentration boundary layer thick-
ness. Mass transfer therefore exerts interplay with the velocity 
field and the distribution of species in materials can be mani-
pulated via the Schmidt number.        
Figures 13 and 14 illustrate the evolution in velocity and 
concentration with a change in chemical reaction parameter 
( γ ). The reaction parameter is based on a first-order irrevers-
ible chemical reaction which takes place both in the bulk of 
the fluid (homogeneous) as well as at plate which is assumed 
to be catalytic to chemical reaction. We consider the destruc-
tive type of homogenous chemical reaction. Increasing γ  
values are found, in fig. 13, to instigate a considerable reduc-
tion in the velocity i.e. flow deceleration. Fig. 14 shows that 
concentration is also depleted in the boundary layer with 
greater chemical reaction, since more species is destroyed via 
the chemical reaction. This results in a reduction in the thick-
ness of the concentration boundary layer.  
Figures 15-16 depict the evolution in velocity with different 
thermal Grashof Gr  and species Grashof Gm  numbers. Both 
Grashof numbers arise solely in the thermal and species 
buoyancy terms in the normalized momentum conservation 
eqn. (10) i.e. φθ Gm,Gr ++ .Thermal Grashof number Gr  is 
described here as quantifying the relative magnitude of the 
thermal buoyancy force and the opposing viscous hydrody-
namic (frictional) force acting on the Newtonian fluid. The 
velocity profiles are invariably enhanced with an increase of 
positive thermal Grashof number (the only case studied). For 

Gr >1 there is a dominance of buoyancy forces over the visc-
ous forces, which in turn further accelerates the flow (Fig. 
15). Increasing thermal buoyancy is therefore assistive to 
momentum development and results in a decrease in momen-
tum boundary layer thickness. Fig. 16 shows that an increase 
in species (solutal) Grashof number Gm  in fact generates an 
even greater acceleration in the flow and substantially ele-
vates velocity ( )u  throughout the boundary layer. The in-
creasing concentration gradient associated with higher Gm 
values accentuates the species buoyancy force which adds 
driving potential to the boundary layer flow and manifests 
again in acceleration and decreasing momentum boundary 
layer thickness.  
Figure 17 shows the pattern of the velocity for different val-
ues of magnetic field parameter M . It is observed that the 
amplitude of the velocity as well as the boundary layer thick-
ness decreases when M  is increased. Physically, it may also 
be expected due to the fact that the magnetic field exerts a 
retarding effect on the free convective flow and upon increas-
ing the values of M , this type of resisting force slows down 
the fluid, hence it is obvious that the effect of increasing val-
ues of the parameter M  results in a decreasing velocity distri-
bution across the boundary layer. 
The profiles of the velocity in the boundary layer for various 
values of the permeability K  are shown in Figure 18. It is 
seen that the peak value of the velocity near the wall of the 
porous plate increases rapidly with K .It is seen also that the 
microrotation increases with increase in K . 
 
 

 
 Figure 2: Velocity profiles for α  
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       Figure 3: Velocity profiles for F  

 
 
 

 
Figure 4: Temperature profiles for F  

 
     Figure 5: Velocity profiles for Ec  

 

 

Figure 6: Temperature profiles for Ec  
 

 
          Figure 7: Velocity profiles for Q  

 

 
       Figure 8: Temperature profiles for Q  

 

 
         Figure 9: Velocity  profiles for Pr  

 

 
Figure 10: Temperature profiles for Pr  
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Figure 11: Velocity  profiles for Sc  

 

 
        Figure 12: Concentration  profiles for Sc  

 

 
 Figure 13: Velocity  profiles for γ  

 

 
         Figure 14: Concentration  profiles for γ  

 

 
      Figure 15: Velocity  profiles for Gr  

 

 
     Figure 16: Velocity  profiles for Gm  

 

 
       Figure 17: Velocity  profiles for M  

 

 
       Figure 18: Velocity  profiles for K  
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5 CONCLUSIONS 
Motivated by the previous works and possible applications, 
the finite element solution has been developed for Effects of 
Thermal radiation and viscous dissipation on unsteady free 
magneto convective heat and mass transfer in newtonian 
fluid flow from an inclined porous plate. We investigated, 
how the flow field, temperature and concentration field are 
affected by the variations of  the Magnetic 
parameter ,M Thermal radiation parameter F ,Eckert num-
ber Ec ,Heat absorption parameter Q , angle of 
tionα ,Permeability of porous medium K , Prandtl number 
Pr , Schmidt number Sc , Grashof number Gr , Modified 
Grashof number Gm  and Chemical reaction parameter γ and 
discussed the results.From the Present numerical study the 
final remarks can be listed as follows: 

1. The flow is decelerated and momentum boundary layer 
thickness increased with  increasing values of angle of 
inclination, magnetic body force parameter, Prandtl 
number,Thermal radiation parameter, heat absorption 
parameter,Schimdt number and chemical reaction 
parameter.  

2. The flow is acelerated and momentum boundary layer 
thickness decreased with  increasing values of  
permeability parameter, thermal Grashof number and 
species Grashof number,  Eckert number.  

3. An increase in viscous dissipation parameters accelerates 
the thickness thermal boundary layer but a reverse pheno-
menon is observed in Prandtl number, Thermal radiation 
and heat absorption. 

4. An increase in physical parameter Schmidt number and 
homogeneous chemical reaction parameter to decrease in 
thickness of concentration boundary layer. 
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